Music reactive LED Strip
1. Arduino Uno
2. LED Strip
3. Microphone Sensor
4. Jumper Wire
First make the connection as shown on the top right.
Then, install the arduino IDE. Then, upload the code and the led blinks.
Link to download Arduino IDE: arduino.cc/en/software
Code for arduino
#include <Adafruit_NeoPixel.h>
#include <FastLED.h>
#include <math.h>
#include <SoftwareSerial.h>
#define N_PIXELS 60 // Number of pixels in strand
#define N_PIXELS_HALF (N_PIXELS/2)
#define MIC_PIN A5 // Microphone is attached to this analog pin
#define LED_PIN 6 // NeoPixel LED strand is connected to this pin
#define SAMPLE_WINDOW 10 // Sample window for average level
#define PEAK_HANG 24 //Time of pause before peak dot falls
#define PEAK_FALL 20 //Rate of falling peak dot
#define PEAK_FALL2 8 //Rate of falling peak dot
#define INPUT_FLOOR 10 //Lower range of analogRead input
#define INPUT_CEILING 300 //Max range of analogRead input, the lower the value the more sensitive (1023 = max)300 (150)
#define DC_OFFSET 0 // DC offset in mic signal - if unusure, leave 0
#define NOISE 10 // Noise/hum/interference in mic signal
#define SAMPLES 60 // Length of buffer for dynamic level adjustment
#define TOP (N_PIXELS + 2) // Allow dot to go slightly off scale
#define SPEED .20 // Amount to increment RGB color by each cycle
#define TOP2 (N_PIXELS + 1) // Allow dot to go slightly off scale
#define LAST_PIXEL_OFFSET N_PIXELS-1
#define PEAK_FALL_MILLIS 10 // Rate of peak falling dot
#define POT_PIN 4
#define BG 0
#define LAST_PIXEL_OFFSET N_PIXELS-1
#if FASTLED_VERSION < 3001000
#error "Requires FastLED 3.1 or later; check github for latest code."
#endif
#define BRIGHTNESS 255
#define LED_TYPE WS2812B // Only use the LED_PIN for WS2812's
#define COLOR_ORDER GRB
#define COLOR_MIN 0
#define COLOR_MAX 255
#define DRAW_MAX 100
#define SEGMENTS 4 // Number of segments to carve amplitude bar into
#define COLOR_WAIT_CYCLES 10 // Loop cycles to wait between advancing pixel origin
#define qsubd(x, b) ((x>b)?b:0)
#define qsuba(x, b) ((x>b)?x-b:0)// Analog Unsigned subtraction macro. if result <0, then => 0. By Andrew Tuline.
#define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0]))
struct CRGB leds[N_PIXELS];
Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800);
static uint16_t dist; // A random number for noise generator.
uint16_t scale = 30; // Wouldn't recommend changing this on the fly, or the animation will be really blocky.
uint8_t maxChanges = 48; // Value for blending between palettes.
CRGBPalette16 currentPalette(OceanColors_p);
CRGBPalette16 targetPalette(CloudColors_p);
//new ripple vu
uint8_t timeval = 20;// Currently 'delay' value. No, I don't use delays, I use EVERY_N_MILLIS_I instead.
uint16_t loops = 0;// Our loops per second counter.
bool samplepeak = 0;// This sample is well above the average, and is a 'peak'.
uint16_t oldsample = 0;// Previous sample is used for peak detection and for 'on the fly' values.
bool thisdir = 0;
//new ripple vu
// Modes
enum
{
} MODE;
bool reverse = true;
int BRIGHTNESS_MAX = 80;
int brightness = 20;
byte
// peak = 0, // Used for falling dot
// dotCount = 0, // Frame counter for delaying dot-falling speed
volCount = 0; // Frame counter for storing past volume data
int
reading,
vol[SAMPLES], // Collection of prior volume samples
lvl = 10, // Current "dampened" audio level
minLvlAvg = 0, // For dynamic adjustment of graph low & high
maxLvlAvg = 512;
float
greenOffset = 30,
blueOffset = 150;
// cycle variables
int CYCLE_MIN_MILLIS = 2;
int CYCLE_MAX_MILLIS = 1000;
int cycleMillis = 20;
bool paused = false;
long lastTime = 0;
bool boring = true;
bool gReverseDirection = false;
int myhue = 0;
//vu ripple
uint8_t colour;
uint8_t myfade = 255; // Starting brightness.
#define maxsteps 16 // Case statement wouldn't allow a variable.
int peakspersec = 0;
int peakcount = 0;
uint8_t bgcol = 0;
int thisdelay = 20;
uint8_t max_bright = 255;
unsigned int sample;
//Samples
#define NSAMPLES 64
unsigned int samplearray[NSAMPLES];
unsigned long samplesum = 0;
unsigned int sampleavg = 0;
int samplecount = 0;
//unsigned int sample = 0;
unsigned long oldtime = 0;
unsigned long newtime = 0;
//Ripple variables
int color;
int center = 0;
int step = -1;
int maxSteps = 16;
float fadeRate = 0.80;
int diff;
//vu 8 variables
int
origin = 0,
color_wait_count = 0,
scroll_color = COLOR_MIN,
last_intensity = 0,
intensity_max = 0,
origin_at_flip = 0;
uint32_t
draw[DRAW_MAX];
boolean
growing = false,
fall_from_left = true;
//background color
uint32_t currentBg = random(256);
uint32_t nextBg = currentBg;
TBlendType currentBlending;
const int buttonPin = 0; // the number of the pushbutton pin
//Variables will change:
int buttonPushCounter = 0; // counter for the number of button presses
int buttonState = 0; // current state of the button
int lastButtonState = 0;
byte peak = 16; // Peak level of column; used for falling dots
// unsigned int sample;
byte dotCount = 0; //Frame counter for peak dot
byte dotHangCount = 0; //Frame counter for holding peak dot
void setup() {
analogReference(EXTERNAL);
pinMode(buttonPin, INPUT);
//initialize the buttonPin as output
digitalWrite(buttonPin, HIGH);
// Serial.begin(9600);
strip.begin();
strip.show(); // all pixels to 'off'
Serial.begin(57600);
delay(3000);
LEDS.addLeds<LED_TYPE,LED_PIN,COLOR_ORDER>(leds,N_PIXELS).setCorrection(TypicalLEDStrip);
LEDS.setBrightness(BRIGHTNESS);
dist = random16(12345); // A semi-random number for our noise generator
}
float fscale( float originalMin, float originalMax, float newBegin, float newEnd, float inputValue, float curve){
float OriginalRange = 0;
float NewRange = 0;
float zeroRefCurVal = 0;
float normalizedCurVal = 0;
float rangedValue = 0;
boolean invFlag = 0;
// condition curve parameter
// limit range
if (curve > 10) curve = 10;
if (curve < -10) curve = -10;
curve = (curve * -.1) ; // - invert and scale - this seems more intuitive - postive numbers give more weight to high end on output
curve = pow(10, curve); // convert linear scale into lograthimic exponent for other pow function
// Check for out of range inputValues
if (inputValue < originalMin) {
inputValue = originalMin;
}
if (inputValue > originalMax) {
inputValue = originalMax;
}
// Zero Refference the values
OriginalRange = originalMax - originalMin;
if (newEnd > newBegin){
NewRange = newEnd - newBegin;
}
else
{
NewRange = newBegin - newEnd;
invFlag = 1;
}
zeroRefCurVal = inputValue - originalMin;
normalizedCurVal = zeroRefCurVal / OriginalRange; // normalize to 0 - 1 float
// Check for originalMin > originalMax - the math for all other cases i.e. negative numbers seems to work out fine
if (originalMin > originalMax ) {
return 0;
}
if (invFlag == 0){
rangedValue = (pow(normalizedCurVal, curve) * NewRange) + newBegin;
}
else // invert the ranges
{
rangedValue = newBegin - (pow(normalizedCurVal, curve) * NewRange);
}
return rangedValue;
}
void loop() {
//for mic
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
// end mic
// read the pushbutton input pin:
buttonState = digitalRead(buttonPin);
// compare the buttonState to its previous state
if (buttonState != lastButtonState) {
// if the state has changed, increment the counter
if (buttonState == HIGH) {
// if the current state is HIGH then the button
// wend from off to on:
buttonPushCounter++;
Serial.println("on");
Serial.print("number of button pushes: ");
Serial.println(buttonPushCounter);
if(buttonPushCounter==16) {
buttonPushCounter=1;}
}
else {
// if the current state is LOW then the button
// wend from on to off:
Serial.println("off");
}
}
// save the current state as the last state,
//for next time through the loop
lastButtonState = buttonState;
switch (buttonPushCounter){
case 1:
buttonPushCounter==1; {
All2(); // NORMAL
break;}
case 2:
buttonPushCounter==2; {
vu(); // NORMAL
break;}
case 3:
buttonPushCounter==3; {
vu1(); // Centre out
break;}
case 4:
buttonPushCounter==4; {
vu2(); // Centre Inwards
break;}
case 5:
buttonPushCounter==5; {
Vu3(); // Normal Rainbow
break;}
case 6:
buttonPushCounter==6; {
Vu4(); // Centre rainbow
break;}
case 7:
buttonPushCounter==7; {
Vu5(); // Shooting Star
break;}
case 8:
buttonPushCounter==8; {
Vu6(); // Falling star
break;}
case 9:
buttonPushCounter==9; {
vu7(); // Ripple with background
break;}
case 10:
buttonPushCounter==10; {
vu8(); // Shatter
break;}
case 11:
buttonPushCounter==11; {
vu9(); // Pulse
break;}
case 12:
buttonPushCounter==12; {
vu10(); // stream
break;}
case 13:
buttonPushCounter==13; {
vu11(); // Ripple without Background
break;}
case 14:
buttonPushCounter==14; {
vu12(); // Ripple without Background
break;}
case 15:
buttonPushCounter==15; {
vu13(); // Ripple without Background
break;}
case 16:
buttonPushCounter==16; {
colorWipe(strip.Color(0, 0, 0), 10); // Black
break;}
}
}
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
if (digitalRead(buttonPin) != lastButtonState) // <------------- add this
return; // <------------ and this
delay(wait);
}}
void vu() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP) height = TOP;
if(height > peak) peak = height; // Keep 'peak' dot at top
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS; i++) {
if(i >= height) strip.setPixelColor(i, 0, 0, 0);
else strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));
}
// Draw peak dot
if(peak > 0 && peak <= N_PIXELS-1) strip.setPixelColor(peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
strip.show(); // Update strip
// Every few frames, make the peak pixel drop by 1:
if(++dotCount >= PEAK_FALL) { //fall rate
if(peak > 0) peak--;
dotCount = 0;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
// Input a value 0 to 255 to get a color value.
// The colors are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
if(WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
}
void vu1() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP) height = TOP;
if(height > peak) peak = height; // Keep 'peak' dot at top
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS_HALF; i++) {
if(i >= height) {
strip.setPixelColor(N_PIXELS_HALF-i-1, 0, 0, 0);
strip.setPixelColor(N_PIXELS_HALF+i, 0, 0, 0);
}
else {
uint32_t color = Wheel(map(i,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(N_PIXELS_HALF-i-1,color);
strip.setPixelColor(N_PIXELS_HALF+i,color);
}
}
// Draw peak dot
if(peak > 0 && peak <= N_PIXELS_HALF-1) {
uint32_t color = Wheel(map(peak,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(N_PIXELS_HALF-peak-1,color);
strip.setPixelColor(N_PIXELS_HALF+peak,color);
}
strip.show(); // Update strip
// Every few frames, make the peak pixel drop by 1:
if(++dotCount >= PEAK_FALL) { //fall rate
if(peak > 0) peak--;
dotCount = 0;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void vu2()
{
unsigned long startMillis= millis(); // Start of sample window
float peakToPeak = 0; // peak-to-peak level
unsigned int signalMax = 0;
unsigned int signalMin = 1023;
unsigned int c, y;
while (millis() - startMillis < SAMPLE_WINDOW)
{
sample = analogRead(MIC_PIN);
if (sample < 1024)
{
if (sample > signalMax)
{
signalMax = sample;
}
else if (sample < signalMin)
{
signalMin = sample;
}
}
}
peakToPeak = signalMax - signalMin;
// Serial.println(peakToPeak);
for (int i=0;i<=N_PIXELS_HALF-1;i++){
uint32_t color = Wheel(map(i,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(N_PIXELS-i,color);
strip.setPixelColor(0+i,color);
}
c = fscale(INPUT_FLOOR, INPUT_CEILING, N_PIXELS_HALF, 0, peakToPeak, 2);
if(c < peak) {
peak = c; // Keep dot on top
dotHangCount = 0; // make the dot hang before falling
}
if (c <= strip.numPixels()) { // Fill partial column with off pixels
drawLine(N_PIXELS_HALF, N_PIXELS_HALF-c, strip.Color(0, 0, 0));
drawLine(N_PIXELS_HALF, N_PIXELS_HALF+c, strip.Color(0, 0, 0));
}
y = N_PIXELS_HALF - peak;
uint32_t color1 = Wheel(map(y,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(y-1,color1);
//strip.setPixelColor(y-1,Wheel(map(y,0,N_PIXELS_HALF-1,30,150)));
y = N_PIXELS_HALF + peak;
strip.setPixelColor(y,color1);
//strip.setPixelColor(y+1,Wheel(map(y,0,N_PIXELS_HALF+1,30,150)));
strip.show();
// Frame based peak dot animation
if(dotHangCount > PEAK_HANG) { //Peak pause length
if(++dotCount >= PEAK_FALL2) { //Fall rate
peak++;
dotCount = 0;
}
}
else {
dotHangCount++;
}
}
void Vu3() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if (height < 0L) height = 0; // Clip output
else if (height > TOP) height = TOP;
if (height > peak) peak = height; // Keep 'peak' dot at top
greenOffset += SPEED;
blueOffset += SPEED;
if (greenOffset >= 255) greenOffset = 0;
if (blueOffset >= 255) blueOffset = 0;
// Color pixels based on rainbow gradient
for (i = 0; i < N_PIXELS; i++) {
if (i >= height) {
strip.setPixelColor(i, 0, 0, 0);
} else {
strip.setPixelColor(i, Wheel(
map(i, 0, strip.numPixels() - 1, (int)greenOffset, (int)blueOffset)
));
}
}
// Draw peak dot
if(peak > 0 && peak <= N_PIXELS-1) strip.setPixelColor(peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
strip.show(); // Update strip
// Every few frames, make the peak pixel drop by 1:
if(++dotCount >= PEAK_FALL) { //fall rate
if(peak > 0) peak--;
dotCount = 0;
}
strip.show(); // Update strip
vol[volCount] = n;
if (++volCount >= SAMPLES) {
volCount = 0;
}
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for (i = 1; i < SAMPLES; i++) {
if (vol[i] < minLvl) {
minLvl = vol[i];
} else if (vol[i] > maxLvl) {
maxLvl = vol[i];
}
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if ((maxLvl - minLvl) < TOP) {
maxLvl = minLvl + TOP;
}
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void Vu4() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP) height = TOP;
if(height > peak) peak = height; // Keep 'peak' dot at top
greenOffset += SPEED;
blueOffset += SPEED;
if (greenOffset >= 255) greenOffset = 0;
if (blueOffset >= 255) blueOffset = 0;
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS_HALF; i++) {
if(i >= height) {
strip.setPixelColor(N_PIXELS_HALF-i-1, 0, 0, 0);
strip.setPixelColor(N_PIXELS_HALF+i, 0, 0, 0);
}
else {
uint32_t color = Wheel(map(i,0,N_PIXELS_HALF-1,(int)greenOffset, (int)blueOffset));
strip.setPixelColor(N_PIXELS_HALF-i-1,color);
strip.setPixelColor(N_PIXELS_HALF+i,color);
}
}
// Draw peak dot
if(peak > 0 && peak <= N_PIXELS_HALF-1) {
uint32_t color = Wheel(map(peak,0,N_PIXELS_HALF-1,30,150));
strip.setPixelColor(N_PIXELS_HALF-peak-1,color);
strip.setPixelColor(N_PIXELS_HALF+peak,color);
}
strip.show(); // Update strip
// Every few frames, make the peak pixel drop by 1:
if(++dotCount >= PEAK_FALL) { //fall rate
if(peak > 0) peak--;
dotCount = 0;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void Vu5()
{
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP2 * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP2) height = TOP2;
if(height > peak) peak = height; // Keep 'peak' dot at top
#ifdef CENTERED
// Color pixels based on rainbow gradient
for(i=0; i<(N_PIXELS/2); i++) {
if(((N_PIXELS/2)+i) >= height)
{
strip.setPixelColor(((N_PIXELS/2) + i), 0, 0, 0);
strip.setPixelColor(((N_PIXELS/2) - i), 0, 0, 0);
}
else
{
strip.setPixelColor(((N_PIXELS/2) + i),Wheel(map(((N_PIXELS/2) + i),0,strip.numPixels()-1,30,150)));
strip.setPixelColor(((N_PIXELS/2) - i),Wheel(map(((N_PIXELS/2) - i),0,strip.numPixels()-1,30,150)));
}
}
// Draw peak dot
if(peak > 0 && peak <= LAST_PIXEL_OFFSET)
{
strip.setPixelColor(((N_PIXELS/2) + peak),255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
strip.setPixelColor(((N_PIXELS/2) - peak),255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
}
#else
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS; i++)
{
if(i >= height)
{
strip.setPixelColor(i, 0, 0, 0);
}
else
{
strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));
}
}
// Draw peak dot
if(peak > 0 && peak <= LAST_PIXEL_OFFSET)
{
strip.setPixelColor(peak,255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
}
#endif
// Every few frames, make the peak pixel drop by 1:
if (millis() - lastTime >= PEAK_FALL_MILLIS)
{
lastTime = millis();
strip.show(); // Update strip
//fall rate
if(peak > 0) peak--;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++)
{
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP2) maxLvl = minLvl + TOP2;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void Vu6()
{
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP2 * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP2) height = TOP2;
if(height > peak) peak = height; // Keep 'peak' dot at top
#ifdef CENTERED
// Draw peak dot
if(peak > 0 && peak <= LAST_PIXEL_OFFSET)
{
strip.setPixelColor(((N_PIXELS/2) + peak),255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
strip.setPixelColor(((N_PIXELS/2) - peak),255,255,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
}
#else
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS; i++)
{
if(i >= height)
{
strip.setPixelColor(i, 0, 0, 0);
}
else
{
}
}
// Draw peak dot
if(peak > 0 && peak <= LAST_PIXEL_OFFSET)
{
strip.setPixelColor(peak,0,0,255); // (peak,Wheel(map(peak,0,strip.numPixels()-1,30,150)));
}
#endif
// Every few frames, make the peak pixel drop by 1:
if (millis() - lastTime >= PEAK_FALL_MILLIS)
{
lastTime = millis();
strip.show(); // Update strip
//fall rate
if(peak > 0) peak--;
}
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++)
{
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP2) maxLvl = minLvl + TOP2;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void vu7() {
EVERY_N_MILLISECONDS(1000) {
peakspersec = peakcount; // Count the peaks per second. This value will become the foreground hue.
peakcount = 0; // Reset the counter every second.
}
soundmems();
EVERY_N_MILLISECONDS(20) {
ripple3();
}
show_at_max_brightness_for_power();
} // loop()
void soundmems() { // Rolling average counter - means we don't have to go through an array each time.
newtime = millis();
int tmp = analogRead(MIC_PIN) - 512;
sample = abs(tmp);
int potin = map(analogRead(POT_PIN), 0, 1023, 0, 60);
samplesum = samplesum + sample - samplearray[samplecount]; // Add the new sample and remove the oldest sample in the array
sampleavg = samplesum / NSAMPLES; // Get an average
samplearray[samplecount] = sample; // Update oldest sample in the array with new sample
samplecount = (samplecount + 1) % NSAMPLES; // Update the counter for the array
if (newtime > (oldtime + 200)) digitalWrite(13, LOW); // Turn the LED off 200ms after the last peak.
if ((sample > (sampleavg + potin)) && (newtime > (oldtime + 60)) ) { // Check for a peak, which is 30 > the average, but wait at least 60ms for another.
step = -1;
peakcount++;
digitalWrite(13, HIGH);
oldtime = newtime;
}
} // soundmems()
void ripple3() {
for (int i = 0; i < N_PIXELS; i++) leds[i] = CHSV(bgcol, 255, sampleavg*2); // Set the background colour.
switch (step) {
case -1: // Initialize ripple variables.
center = random(N_PIXELS);
colour = (peakspersec*10) % 255; // More peaks/s = higher the hue colour.
step = 0;
bgcol = bgcol+8;
break;
case 0:
leds[center] = CHSV(colour, 255, 255); // Display the first pixel of the ripple.
step ++;
break;
case maxsteps: // At the end of the ripples.
// step = -1;
break;
default: // Middle of the ripples.
leds[(center + step + N_PIXELS) % N_PIXELS] += CHSV(colour, 255, myfade/step*2); // Simple wrap from Marc Miller.
leds[(center - step + N_PIXELS) % N_PIXELS] += CHSV(colour, 255, myfade/step*2);
step ++; // Next step.
break;
} // switch step
} // ripple()
void vu8() {
int intensity = calculateIntensity();
updateOrigin(intensity);
assignDrawValues(intensity);
writeSegmented();
updateGlobals();
}
int calculateIntensity() {
int intensity;
reading = analogRead(MIC_PIN); // Raw reading from mic
reading = abs(reading - 512 - DC_OFFSET); // Center on zero
reading = (reading <= NOISE) ? 0 : (reading - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + reading) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
intensity = DRAW_MAX * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
return constrain(intensity, 0, DRAW_MAX-1);
}
void updateOrigin(int intensity) {
// detect peak change and save origin at curve vertex
if (growing && intensity < last_intensity) {
growing = false;
intensity_max = last_intensity;
fall_from_left = !fall_from_left;
origin_at_flip = origin;
} else if (intensity > last_intensity) {
growing = true;
origin_at_flip = origin;
}
last_intensity = intensity;
// adjust origin if falling
if (!growing) {
if (fall_from_left) {
origin = origin_at_flip + ((intensity_max - intensity) / 2);
} else {
origin = origin_at_flip - ((intensity_max - intensity) / 2);
}
// correct for origin out of bounds
if (origin < 0) {
origin = DRAW_MAX - abs(origin);
} else if (origin > DRAW_MAX - 1) {
origin = origin - DRAW_MAX - 1;
}
}
}
void assignDrawValues(int intensity) {
// draw amplitue as 1/2 intensity both directions from origin
int min_lit = origin - (intensity / 2);
int max_lit = origin + (intensity / 2);
if (min_lit < 0) {
min_lit = min_lit + DRAW_MAX;
}
if (max_lit >= DRAW_MAX) {
max_lit = max_lit - DRAW_MAX;
}
for (int i=0; i < DRAW_MAX; i++) {
// if i is within origin +/- 1/2 intensity
if (
(min_lit < max_lit && min_lit < i && i < max_lit) // range is within bounds and i is within range
|| (min_lit > max_lit && (i > min_lit || i < max_lit)) // range wraps out of bounds and i is within that wrap
) {
draw[i] = Wheel(scroll_color);
} else {
draw[i] = 0;
}
}
}
void writeSegmented() {
int seg_len = N_PIXELS / SEGMENTS;
for (int s = 0; s < SEGMENTS; s++) {
for (int i = 0; i < seg_len; i++) {
strip.setPixelColor(i + (s*seg_len), draw[map(i, 0, seg_len, 0, DRAW_MAX)]);
}
}
strip.show();
}
uint32_t * segmentAndResize(uint32_t* draw) {
int seg_len = N_PIXELS / SEGMENTS;
uint32_t segmented[N_PIXELS];
for (int s = 0; s < SEGMENTS; s++) {
for (int i = 0; i < seg_len; i++) {
segmented[i + (s * seg_len) ] = draw[map(i, 0, seg_len, 0, DRAW_MAX)];
}
}
return segmented;
}
void writeToStrip(uint32_t* draw) {
for (int i = 0; i < N_PIXELS; i++) {
strip.setPixelColor(i, draw[i]);
}
strip.show();
}
void updateGlobals() {
uint16_t minLvl, maxLvl;
//advance color wheel
color_wait_count++;
if (color_wait_count > COLOR_WAIT_CYCLES) {
color_wait_count = 0;
scroll_color++;
if (scroll_color > COLOR_MAX) {
scroll_color = COLOR_MIN;
}
}
vol[volCount] = reading; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(uint8_t i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < N_PIXELS) maxLvl = minLvl + N_PIXELS;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
void vu9() {
//currentBlending = LINEARBLEND;
currentPalette = OceanColors_p; // Initial palette.
currentBlending = LINEARBLEND;
EVERY_N_SECONDS(5) { // Change the palette every 5 seconds.
for (int i = 0; i < 16; i++) {
targetPalette[i] = CHSV(random8(), 255, 255);
}
}
EVERY_N_MILLISECONDS(100) { // AWESOME palette blending capability once they do change.
uint8_t maxChanges = 24;
nblendPaletteTowardPalette(currentPalette, targetPalette, maxChanges);
}
EVERY_N_MILLIS_I(thistimer,20) { // For fun, let's make the animation have a variable rate.
uint8_t timeval = beatsin8(10,20,50); // Use a sinewave for the line below. Could also use peak/beat detection.
thistimer.setPeriod(timeval); // Allows you to change how often this routine runs.
fadeToBlackBy(leds, N_PIXELS, 16); // 1 = slow, 255 = fast fade. Depending on the faderate, the LED's further away will fade out.
sndwave();
soundble();
}
FastLED.setBrightness(max_bright);
FastLED.show();
} // loop()
void soundble() { // Quick and dirty sampling of the microphone.
int tmp = analogRead(MIC_PIN) - 512 - DC_OFFSET;
sample = abs(tmp);
} // soundmems()
void sndwave() {
leds[N_PIXELS/2] = ColorFromPalette(currentPalette, sample, sample*2, currentBlending); // Put the sample into the center
for (int i = N_PIXELS - 1; i > N_PIXELS/2; i--) { //move to the left // Copy to the left, and let the fade do the rest.
leds[i] = leds[i - 1];
}
for (int i = 0; i < N_PIXELS/2; i++) { // move to the right // Copy to the right, and let the fade to the rest.
leds[i] = leds[i + 1];
}
addGlitter(sampleavg);
}
void vu10() {
EVERY_N_SECONDS(5) { // Change the target palette to a random one every 5 seconds.
static uint8_t baseC = random8(); // You can use this as a baseline colour if you want similar hues in the next line.
for (int i = 0; i < 16; i++) {
targetPalette[i] = CHSV(random8(), 255, 255);
}
}
EVERY_N_MILLISECONDS(100) {
uint8_t maxChanges = 24;
nblendPaletteTowardPalette(currentPalette, targetPalette, maxChanges); // AWESOME palette blending capability.
}
EVERY_N_MILLISECONDS(thisdelay) { // FastLED based non-blocking delay to update/display the sequence.
soundtun();
FastLED.setBrightness(max_bright);
FastLED.show();
}
} // loop()
void soundtun() {
int n;
n = analogRead(MIC_PIN); // Raw reading from mic
n = qsuba(abs(n-512), 10); // Center on zero and get rid of low level noise
CRGB newcolour = ColorFromPalette(currentPalette, constrain(n,0,255), constrain(n,0,255), currentBlending);
nblend(leds[0], newcolour, 128);
for (int i = N_PIXELS-1; i>0; i--) {
leds[i] = leds[i-1];
}
} // soundmems()
void vu11() {
EVERY_N_MILLISECONDS(1000) {
peakspersec = peakcount; // Count the peaks per second. This value will become the foreground hue.
peakcount = 0; // Reset the counter every second.
}
soundrip();
EVERY_N_MILLISECONDS(20) {
rippled();
}
FastLED.show();
} // loop()
void soundrip() { // Rolling average counter - means we don't have to go through an array each time.
newtime = millis();
int tmp = analogRead(MIC_PIN) - 512;
sample = abs(tmp);
int potin = map(analogRead(POT_PIN), 0, 1023, 0, 60);
samplesum = samplesum + sample - samplearray[samplecount]; // Add the new sample and remove the oldest sample in the array
sampleavg = samplesum / NSAMPLES; // Get an average
Serial.println(sampleavg);
samplearray[samplecount] = sample; // Update oldest sample in the array with new sample
samplecount = (samplecount + 1) % NSAMPLES; // Update the counter for the array
if (newtime > (oldtime + 200)) digitalWrite(13, LOW); // Turn the LED off 200ms after the last peak.
if ((sample > (sampleavg + potin)) && (newtime > (oldtime + 60)) ) { // Check for a peak, which is 30 > the average, but wait at least 60ms for another.
step = -1;
peakcount++;
oldtime = newtime;
}
} // soundmems()
void rippled() {
fadeToBlackBy(leds, N_PIXELS, 64); // 8 bit, 1 = slow, 255 = fast
switch (step) {
case -1: // Initialize ripple variables.
center = random(N_PIXELS);
colour = (peakspersec*10) % 255; // More peaks/s = higher the hue colour.
step = 0;
break;
case 0:
leds[center] = CHSV(colour, 255, 255); // Display the first pixel of the ripple.
step ++;
break;
case maxsteps: // At the end of the ripples.
// step = -1;
break;
default: // Middle of the ripples.
leds[(center + step + N_PIXELS) % N_PIXELS] += CHSV(colour, 255, myfade/step*2); // Simple wrap from Marc Miller.
leds[(center - step + N_PIXELS) % N_PIXELS] += CHSV(colour, 255, myfade/step*2);
step ++; // Next step.
break;
} // switch step
} // ripple()
//Used to draw a line between two points of a given color
void drawLine(uint8_t from, uint8_t to, uint32_t c) {
uint8_t fromTemp;
if (from > to) {
fromTemp = from;
from = to;
to = fromTemp;
}
for(int i=from; i<=to; i++){
strip.setPixelColor(i, c);
}
}
void setPixel(int Pixel, byte red, byte green, byte blue) {
strip.setPixelColor(Pixel, strip.Color(red, green, blue));
}
void setAll(byte red, byte green, byte blue) {
for(int i = 0; i < N_PIXELS; i++ ) {
setPixel(i, red, green, blue);
}
strip.show();
}
void vu12() {
EVERY_N_MILLISECONDS(1000) {
peakspersec = peakcount; // Count the peaks per second. This value will become the foreground hue.
peakcount = 0; // Reset the counter every second.
}
soundripped();
EVERY_N_MILLISECONDS(20) {
rippvu();
}
FastLED.show();
} // loop()
void soundripped() { // Rolling average counter - means we don't have to go through an array each time.
newtime = millis();
int tmp = analogRead(MIC_PIN) - 512;
sample = abs(tmp);
int potin = map(analogRead(POT_PIN), 0, 1023, 0, 60);
samplesum = samplesum + sample - samplearray[samplecount]; // Add the new sample and remove the oldest sample in the array
sampleavg = samplesum / NSAMPLES; // Get an average
Serial.println(sampleavg);
samplearray[samplecount] = sample; // Update oldest sample in the array with new sample
samplecount = (samplecount + 1) % NSAMPLES; // Update the counter for the array
if (newtime > (oldtime + 200)) digitalWrite(13, LOW); // Turn the LED off 200ms after the last peak.
if ((sample > (sampleavg + potin)) && (newtime > (oldtime + 60)) ) { // Check for a peak, which is 30 > the average, but wait at least 60ms for another.
step = -1;
peakcount++;
oldtime = newtime;
}
} // soundmems()
void rippvu() { // Display ripples triggered by peaks.
fadeToBlackBy(leds, N_PIXELS, 64); // 8 bit, 1 = slow, 255 = fast
switch (step) {
case -1: // Initialize ripple variables.
center = random(N_PIXELS);
colour = (peakspersec*10) % 255; // More peaks/s = higher the hue colour.
step = 0;
break;
case 0:
leds[center] = CHSV(colour, 255, 255); // Display the first pixel of the ripple.
step ++;
break;
case maxsteps: // At the end of the ripples.
// step = -1;
break;
default: // Middle of the ripples.
leds[(center + step + N_PIXELS) % N_PIXELS] += CHSV(colour, 255, myfade/step*2); // Simple wrap from Marc Miller.
leds[(center - step + N_PIXELS) % N_PIXELS] += CHSV(colour, 255, myfade/step*2);
step ++; // Next step.
break;
} // switch step
addGlitter(sampleavg);
} // ripple()
void vu13() { // The >>>>>>>>>> L-O-O-P <<<<<<<<<<<<<<<<<<<<<<<<<<<< is buried here!!!11!1!
EVERY_N_MILLISECONDS(1000) {
peakspersec = peakcount; // Count the peaks per second. This value will become the foreground hue.
peakcount = 0; // Reset the counter every second.
}
soundripper();
EVERY_N_MILLISECONDS(20) {
jugglep();
}
FastLED.show();
} // loop()
void soundripper() { // Rolling average counter - means we don't have to go through an array each time.
newtime = millis();
int tmp = analogRead(MIC_PIN) - 512;
sample = abs(tmp);
int potin = map(analogRead(POT_PIN), 0, 1023, 0, 60);
samplesum = samplesum + sample - samplearray[samplecount]; // Add the new sample and remove the oldest sample in the array
sampleavg = samplesum / NSAMPLES; // Get an average
Serial.println(sampleavg);
samplearray[samplecount] = sample; // Update oldest sample in the array with new sample
samplecount = (samplecount + 1) % NSAMPLES; // Update the counter for the array
if (newtime > (oldtime + 200)) digitalWrite(13, LOW); // Turn the LED off 200ms after the last peak.
if ((sample > (sampleavg + potin)) && (newtime > (oldtime + 60)) ) { // Check for a peak, which is 30 > the average, but wait at least 60ms for another.
step = -1;
peakcount++;
oldtime = newtime;
// Change the current pattern function periodically.
jugglep();
}
} // loop()
void jugglep() { // Use the juggle routine, but adjust the timebase based on sampleavg for some randomness.
// Persistent local variables
static uint8_t thishue=0;
timeval = 40; // Our EVERY_N_MILLIS_I timer value.
leds[0] = ColorFromPalette(currentPalette, thishue++, sampleavg, LINEARBLEND);
for (int i = N_PIXELS-1; i >0 ; i-- ) leds[i] = leds[i-1];
addGlitter(sampleavg/2); // Add glitter based on sampleavg. By Andrew Tuline.
} // matrix()
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos, float opacity) {
if(WheelPos < 85) {
return strip.Color((WheelPos * 3) * opacity, (255 - WheelPos * 3) * opacity, 0);
}
else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color((255 - WheelPos * 3) * opacity, 0, (WheelPos * 3) * opacity);
}
else {
WheelPos -= 170;
return strip.Color(0, (WheelPos * 3) * opacity, (255 - WheelPos * 3) * opacity);
}
}
void addGlitter( fract8 chanceOfGlitter) { // Let's add some glitter, thanks to Mark
if( random8() < chanceOfGlitter) {
leds[random16(N_PIXELS)] += CRGB::White;
}
} // addGlitter()
// List of patterns to cycle through. Each is defined as a separate function below.
typedef void (*SimplePatternList[])();
SimplePatternList qPatterns = {vu, vu1, vu2, Vu3, Vu4, Vu5, Vu6, vu7, vu8, vu9, vu10, vu11, vu12, vu13};
uint8_t qCurrentPatternNumber = 0; // Index number of which pattern is current
void nextPattern2()
{
// add one to the current pattern number, and wrap around at the end
qCurrentPatternNumber = (qCurrentPatternNumber + 1) % ARRAY_SIZE( qPatterns);
}
void All2()
{
// Call the current pattern function once, updating the 'leds' array
qPatterns[qCurrentPatternNumber]();
EVERY_N_SECONDS( 30 ) { nextPattern2(); } // change patterns periodically
}
Comments
Post a Comment